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A PARABOLIC MODEL GEOMETRY
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Last time, we finished by defining a parabolic model geometry to
be a model (G,P ) with G semisimple and P parabolic. Now, we will
begin exploring what these parabolic models look like. This can, of
course, seem overwhelming at first, since—even topologically—these
geometries are quite a bit more involved than just frames on a plane.

However, it turns out that these model geometries aren’t that much
more complicated than frames on a plane when we separate them into
manageable pieces. In this lecture, we’ll be learning how to imagine
ourselves as observers in a parabolic model geometry with the following
tools:

• A large open subset of G/P over which (G,P ) looks like a frame
bundle over a vector space

• A way of dissecting the base manifold G/P , cutting it into
manageable pieces

• A method for visualizing the higher-order parts of G

By the end of the lecture, we should have a decent grasp of what to
expect visually when we encounter a parabolic model geometry. This
will prepare us for the next two lectures, which will cover the specific
examples of projective geometry and conformal Riemannian geometry.

1. Open cells

Previously, we saw that the semisimple Lie algebra g decomposes as
g = g− + g0 + p+ = g− + p. For sufficiently small open neighborhoods
V and W of the identity in G− and P , respectively, this tells us that
exp(V ) exp(W ) is an open neighborhood of the identity in G. In partic-
ular, for each up ∈ G−P , the open neighborhood u exp(V ) exp(W )p of
up is also contained in G−P , so G−P is an open subset of G. Since q

P
is

a submersion—hence an open map—it follows that q
P
(G−) = q

P
(G−P )

is an open subset of G/P , and since G−∩P = {e}, q
P
|G− is an embed-

ding of G− into G/P .
We saw this open cell when we first encountered the parabolic model

geometry (SL2R, B); in that case, the open cell q
P
(G−) corresponded

to a copy of the affine line.
1
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Figure 1. The natural quotient map q
P

: G → G/P
restricts to an embedding on each gG−

The horospherical subgroup G− is simply connected and nilpotent.
In particular, this tells us that the exponential map exp : g− → G−
is a diffeomorphism, so that G− is topologically equivalent to a vector
space. The subgroup G0 := ZP (Egr) acts on the subalgebra g− by the
adjoint representation, so under this topological identification between
g− and G− given by the exponential map, the conjugation action of G0

on G− is linear. This puts us in a situation with which we should be
fairly comfortable: G−G0 has G0 as a closed subgroup acting linearly
on the normal subgroup G− ⊴ G−G0, just like how I(2) has O(2)
as a closed subgroup acting linearly on the normal subgroup R2 of
translations. In short, we can think of G−G0 as a space of particular
frames over G−.

Note that G−G0 is another parabolic subgroup of G. Indeed, its
Lie subalgebra g− + g0 satisfies (g− + g0)

⊥ = g−, and for θ a Cartan
involution used to obtain the grading, θ(p+) = g− and θ(g0) = g0, so
g− + g0 = θ(p). We call it the opposite parabolic to P ; note that there
might be a different choice of opposite parabolic for a different choice
of Cartan involution θ determining the grading.

Often, the geometry of the model (G−G0, G0) is a kind of affine
analogue of the geometry of (G,P ). In the model (PGLm+1 R, P ) for
projective geometry, for example, G− ≃ Rm and G0 ≃ GLm R, so
that (G−G0, G0) is equivalent to (Aff(m),GLm R), the model for affine
geometry. We’ll see this in a bit more detail in the next lecture.

Conveniently, the open subset G−P = q−1
P
(G−) of G is topologically

a product G− × P , since G− ∩ P = {e}. As we saw last time, P itself
is of the form G0P+, and since G0 ∩ P+ = {e}, it is also topologically
a product G0 × P+. Altogether, this tells us that G−P = q−1

P
(G−)

looks like G−G0×P+, so over q
P
(G−), the geometry looks like a kind of

frame bundle G−G0 over G−, together with some “higher-order frames”
from P+ on top. We’ll give some insight into what these “higher-order
frames” look like later in this lecture.
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For each configuration g ∈ G over G/P , we get a copy of G− as
the left-coset gG−. Since these are just left-translations of G− by g,
meaning they are images of G− under the transformation given by g,
the geometry looks the same on gG− as it does on G−. In other words,
wherever we are at in G, we can give ourselves a convenient open subset
on which the geometry looks like a “higher-order frame bundle” over a
copy of G−.
Of course, all of this makes G− a prime candidate for an analogue

of the translation subgroup in I(2), so we can get a notion of geodesic
inside our current copy of G− by using one-parameter subgroups gen-
erated by elements of g−. In the case of projective geometry, these will
just be affine geodesics inside the current affine patch. These types of
distinguished curves generally aren’t as consistent in the base mani-
fold as the other types of geodesics we’ve dealt with so far; we’ll see
this most prominently when we talk about conformal geometry. How-
ever, this type of motion is always available and meaningful from our
observer perspective in the model group G.

2. Filling in the rest of G/P

As we saw above, the horospherical subgroup G− essentially lets us
reduce the local picture of (G,P ) to that of frames on a vector space.
However, we’d still like to have an idea of what G/P looks like globally.

Thankfully, the open cell q
P
(G−) often takes up a large portion of

G/P . We saw this in the case of (SL2R, B), for example, where the
affine line took up all of SL2R/B except for a “point at infinity”. Unlike
in the case of symmetric spaces, we do not need to describe this point
at infinity in terms of asymptotic boundedness; it is literally the limit
of an affine line embedded into SL2R/B.

Figure 2. The open subset q
P
(G−) often fills up a large

portion of G/P

We’d like to have a way of breaking G/P into smaller, topologically
simple pieces, similar to the case of (SL2R, B). It turns out that we
can do this, through a generalization of something called the Bruhat
decomposition.
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Inside of our parabolic subgroup P , let us choose a minimal parabolic
subgroupB ≤ P . SinceB is parabolic, we get a corresponding filtration
subordinate to the filtration from P , and by using the same Cartan
involution θ, we get a grading of g subordinate to the grading from P .
Let us denote by Z the grading element for this new grading.

As before, we can decompose g into the centralizer b0 := zg(Z) and
two horospherical subalgebras

b− := {X ∈ g : Adexp(tZ)(X) → 0 as t → +∞}
and

b+ := b⊥ = {X ∈ g : Adexp(tZ)(X) → 0 as t → −∞},
so that g = b− + b0 + b+ and b = b0 + b+. Let B− be the connected
subgroup generated by b−.

Since b ≤ p, we must have p⊥ = p+ ≤ b+ = b⊥, and similarly,
θ(p+) = g− ≤ b− = θ(b+). In other words, because B is smaller than
P , the horospherical part of B must be larger than the horospherical
part of P . Moreover, since b+ ≤ b ≤ p, we must also have that
θ(b+) = b− ≤ g− + g0 = θ(p). Thus, G− ≤ B− ≤ G−G0, and in
particular, q

P
(G−) = q

P
(B−).

Of course, every element of G/P lies in some orbit of B−, but it
turns out that there are often only finitely many B−-orbits (when G/P
is compact).

Theorem 2.1. Given a parabolic model (G,P ), G/P decomposes as a
disjoint union of cells

G/P =
⊔

σ∈WP

B−qP (σ),

where WP = NG(b0)/NG0(b0). Moreover, if G/P is compact, then WP

is finite.

Figure 3. The cell decomposition for a parabolic geom-
etry, corresponding to a decomposition into stable man-
ifolds for the action of the grading element of a minimal
parabolic subgroup
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In the classical, algebraic case over C, WB = NG(b0)/B0 is a finite
group called the Weyl group.

The proof, which will hopefully be part of an upcoming joint work
between Rachel and me, requires quite a few technical results from
representation theory. However, the idea of the proof is fairly straight-
forward: consider the left-action of exp(tZ) on G/P . The fixed points
of this flow will correspond to the points of WP , and the stable mani-
folds for these fixed points will be their B−-orbits.

This decomposition is, geometrically, a bit fragile. In the general
“curved” case, it often doesn’t work. If, however, the holonomy
happens to be unipotent, and one happens to have a way of
describing “curved” cosets... Well, more on that later.

Ultimately, what this usually looks like is a big cell coming from
the open subset q

P
(G−) = q

P
(B−) together with some collections of

“points at infinity” that compactify it.

3. How do we see P+?

Above, we showed that the open cell lets us reduce to the open set
G−P = (G−G0)P+ to get the local picture of (G,P ). We already have
a fairly good picture of G−G0, as a particular frame bundle over G−,
so all that really remains is to figure out the P+ part. There are three
perspectives that I find useful for this purpose; all three are useful in
different situations, and together they give a fairly satisfying picture of
what’s going on.

Figure 4. In (SL2R, B), G− acts by translations on the
affine line through ( 1

0 ), while B+ acts by translations on
the affine line through ( 0

1 )

First, we can think of P+ as a kind of “dual” translation subgroup
to G−. Just like in the case of G−, the left-action of the horospherical
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subgroup P+ determines an open cell1 on G/P . We saw this in the
case of (SL2R, B), where the subgroup G− acted by translations along
one affine line, and B+ acted by translations along another affine line
through the point at infinity of the first. On the open cell determined
by P+, it acts as G− does on its own open cell through q

P
(e). This is, of

course, quite useful for seeing P+ as a group of transformations of G/P ,
but the global nature of it kind of defeats the purpose of restricting to
the local picture in the first place.

The second way of seeing P+ comes from using the Killing form ŋ.
Recall that p = p⊥+. Because ŋ is nondegenerate, this gives us a duality
between g/p = g/p⊥+ and p+. In particular, the dual space (g/p)∨

is isomorphic to p+ as a P -representation, and hence the cotangent
bundle T∨(G/P ) satisfies

T∨(G/P ) ∼= G×P (g/p)∨ ∼= G×P p+.

Since g− ≈ (g− + g0 + p+)/(g0 + p+) = g/p as G0-representations, this
recovers the duality between g− and p+ that we’ve mentioned before:
each element α ∈ g∨− corresponds to a unique element αŋ ∈ p+ such
that α(X) = ŋ(αŋ, X) for every X ∈ g−. This again lets us think of
p+ as a subalgebra of “dual” translations to g−. Algebraically, this is
a convenient perspective, though it is a bit difficult to give a visual
depiction of it.

Figure 5. The right-action of P+ is by “unipotent tilts”
of the copies of G−

The third way to see P+ generalizes the “unipotent tilt” perspective
that we described when we discussed (SL2R, B). As we mentioned

1Specifically, it is of the form P+qP
(σ) for a particular element of WP of “max-

imal length”, though we don’t really need to know what that means right now.
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above, we have a copy gG− of G− through each g ∈ G, which allows
us to give a local picture of (G,P ) as a kind of “higher-order frame
bundle” g(G−G0)P+ over gG−. Visually, when we right-translate by
some p ∈ P+ and then consider the corresponding copy gpG− of G−,
the result is a kind of “tilting” of gG−. Since this is difficult to describe
abstractly, we’ll return to this in the next two lectures when we talk
about explicit examples.

Figure 6. Right-translating [u v] ∈ SL2R by a unipo-
tent tilt takes the affine line determined by v and tilts it
along the line determined by u


